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Abstract – Simulated NOvA experiment detector image data and corresponding metadata, 

created using GEANT4 and GENIE were analyzed with contemporary machine learning 

techniques. A binary classification network, inspired by recent works and the GooGLeNet 

network architecture designed for the Imagenet competition, was created and tuned towards 

separating charged – current muon neutrino events from other background data from the 

detector. Further regression analysis was done on the metadata, to reconstruct the incoming 

neutrino and resulting lepton energies, which are crucial to determining the probability of 

neutrino oscillations. Finally, more complex multiclass classification tasks of: the number 

of protons/pions present in the detector image, and classifying the interaction mode were 

attempted and the results documented. 

 

I. Introduction 

 

 

Experimental history 

The recent progress in research around neutrino oscillations has been groundbreaking for 

modern physics, and will continue to have massive impact on future discoveries and our 

understanding of the universe. The journey to finding this quantum mechanical phenomenon 

started during the pursuit of answers to a “solar neutrino problem” which was first 

encountered in the mid-1960s [1]. The basic fusion reactions that take place inside the sun 

produces neutrinos [1], some of which eventually penetrate underground beneath the Earth’s 

surface. A solar neutrino detector was devised and created, which would go on to run for 3 

years [1], yielding surprising results. The cosmic ray level of neutrino flux was measured to 

be significantly lower than the standard model predicted at the time [1], which caused much 

speculation. 

 

Around half a century later, a breakthrough came with the discoveries of the Kamiokande and 

Super-Kamiokande (SK) Collaborations [2]. Analysis was completed on atmospheric neutrino 

data collected from 33.0 kiloton-years, or 535 days exposure of the SK detector. One 

particular ratio R measured by the detector, calculated using equation 1 where 𝜇 and e are 

the number of muon-like and electron-like events found by the detector (data) and Monte 

Carlo (MC) simulation, was eventually cited as evidence for neutrino oscillations [2]. R took 

values significantly smaller than expected. No combination of uncertainties in the data or 

known theories at that time was able to explain the data [2]. 

 

𝑅 ≡
(

𝜇

𝑒
)𝐷𝑎𝑡𝑎

(
𝜇

𝑒
)𝑀𝐶

        (1) 

 

The main theory to explain the data was a two-neutrino oscillation model either between 

muon neutrinos and tau neutrinos, or between muon neutrinos and a new, non-interacting 

“sterile” neutrino, consistent with the observed flavor ratios and zenith angle distributions 

over the entire energy region [2]. The electron neutrino was left out of the model due to its 

negligible activity in atmospheric mixing, which is the data SK was collecting. 
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The current neutrino oscillation model describes the process of a neutrino being created in a 

certain flavor – tau, muon and electron – and changing into another neutrino of a different 

flavor over a period of time, with a certain probability, described in equation 2. This can 

happen several times during a single journey of the neutrino.  

 

𝑃𝛼→𝛽 = 𝑠𝑖𝑛(2𝜃)
2 𝑠𝑖𝑛2 (1.27

𝛥𝑚2𝐿

𝐸

[ⅇ𝑣2][𝑘𝑚]

[𝐺ⅇ𝑉]
)     (2) 

 

The other theory of sterile neutrinos was recently made highly unlikely through the 

MiniBooNE experiment, which found “severe constraints” on the standard 3 + 1 sterile 

neutrino hypothesis [3]. Several null oscillation results [4 – 8] from various experiments 

strongly disfavored the sterile neutrino hypothesis, and while adding more sterile flavors to 

the hypothesis improves it, it only does so marginally [3]. 

 

The follow on from this experiment, called MicroBooNE, aims to examine problems that 

couldn’t be solved by MiniBooNE. It is currently running, and the full results are yet to be 

seen. 

 

Background for the NOvA experiment 

The focus of this paper is solely based on data from the NOvA experiment. This experiment 

was created with the goal of taking measurements of neutrino oscillation parameters [9], some 

of which are shown in equation 2. The experiment also seeks to understand a phenomenon not 

predicted by the current standard model of physics.  

 

The experiment is conducted by Fermilab [10]. The neutrino beam is “created” at their Main 

injector. The setup works by firing neutrinos created from the injector towards two detectors; 

one “near” detector which is around 1km away from the source of the beam, and a “far” 

detector around 810 km away [10]. The beam of neutrinos is initially created by firing protons 

at a graphite target – upon collision, there is a creation of many different fundamental 

particles including pions [10]. These pions eventually decay into muons and muon neutrinos. 

Both detectors contain 344 thousand cells of highly reflective PVC filled with plastic 

scintillator [10]. The scintillator is made out of solvent molecules and fluor molecules, which 

work in tandem to emit photons once charged particles collide with the scintillator molecules. 

Charged particles are created through the collision of the neutrino, and the energy of these 

particles is recorded as they come to rest. Using the patterns of scintillation light, it can be 

determined which neutrino flavor caused the interaction and its energy [10]. 

 

These interactions within the detector can be divided into two main types of events. One of 

these is called “charged-current” event, and the other is called “neutral-current” event [11]. In 

charged-current (CC) events, which happen via the exchange of W+/W- bosons [11], the 

neutrino interacts to become its charged lepton partner. In a neutral current (NC) event, which 

happens via the exchange of Z bosons [11], the neutrino just scatters inside the detector.  
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The charged-current events, can be further divided into three categories. These are the quasi-

elastic (QE), resonant (RES), and deep-inelastic scattering (DIS) categories [11]. Each 

interaction mode dominants in various neutrino energies [12]. Specifically, QE events are 

known to dominate at low energies, RES at medium energies, and finally DIS, which 

dominates at large neutrino energies [12].  

 

Experiments in high-energy physics use a plethora of different analysis techniques to the 

properties of various subatomic particles [14]. Recently, following the developments in the 

field of deep learning, there have been several implementations of machine learning 

algorithms in the form of neural networks to aid data analysis of the NOvA experiment [13-

14], with reasonable success. It is thought that the classification of interactions/events inside a 

detector shares many similarities with image recognition, in the sense that topological features 

are useful in both tasks [14].  

 

In certain areas, such as cosmic background rejection, neural networks already outperform 

traditional rejection algorithms in all sample areas [13]. In recent years, convolutional 

(CNNs), adversarial and recurrent neural networks (RNNs) have been used in the field of 

high-energy physics for a variety of different tasks [14].  

 

A traditional neural network consists of a sequence of layers, and each layer is made up of 

neurons. The connections between individual neurons gives rise to hyperparameters such as 

weights and biases [15]. The neural network learns by tuning these hyperparameters to 

minimize a loss function, which is a function which describes the distance between the 

current model prediction and the label/answer [15]. It does this through an algorithm called 

backpropagation, which calculates the gradient of the loss function with respect to every 

hyperparameter, and conveniently updates each hyperparameter in the opposite direction to 

this gradient after every forward pass of the network, reducing loss [15]. 

 

The basic inner workings of a CNN can be described as a sliding “kernel” which creates a 

new image by multiplying pixel values of the image with the values in the kernel [15]. CNNs 

can also be implemented with other techniques, known as pooling or 1x1 convolutions, to 

reduce the dimensionality of the image data, which reduces the computational load [15]. 

Pooling also reduces the sensitivity of the network to the absolute location of certain features 

of the image. 

 

A recent paper published in 2016 outlines a particular method to classify detector events 

taking inspiration from the GoogLeNet architecture [13], which performed very well in the 

ImageNet competition task of that year. 

There is a “sub-network” present in the 

GoogLeNet architecture, that will be used 

in the network used in this paper, called an 

“inception module” which extracts features 

of different scales and concatenates the 

result. This is shown in figure 1. 

Figure 1: An inception module 
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The LRN layers stand for “local response normalization”, which normalizes the output of the 

previous layer. 

 

II. Methodology 

 

The dataset is given in the form of .h5 files and can be found at 

ref. [16]. The detector images are given as a concatenated array 

of two separate images: one image shows a top view (x -z plane) 

of the detector, and one shows the side (y-z plane) view. 

 

One particular approach to handling this image data would be to 

pass it as a single input into the network, but a more robust way 

would be to separate the images and process them separately. 

 

The second approach is a method called mixture of experts, 

where multiple networks are used to process different data, 

before the “judgements” of each expert, or network, is combined. 

The overall network decides what weight to give to each of the 

“experts” and the judgement of each is combined to determine 

the final decision of the network. In this case, two such experts 

could be used, one to process the x – z plane view of the detector, 

and another to process the y – z plane. This illustrated in figure 2. 

 

The most common network architecture used throughout this 

experiment is a simplified version of the network in figure 2. 

 

The entire project will be conducted on a Windows Surface Pro 6, 

with 8GB RAM, Windows 64-bit operating system, and Intel 

Core i5 – 58250U CPU 1.60GHz. The code is run on the Google 

Colab IDE, where the project has access to a NVIDIA-SMI P100 

GPU, with runtime set to High-RAM mode. 

 

Classifying CC muon neutrino events and background events 

 

The first step in any deep learning/supervised learning task is obtaining training data, and 

preferably lots of it. For context, one of the most known and widely used data sets, the 

MNIST handwritten digits dataset contains around 60000 images. For this experiment, UCL 

provided a collection of total 403 files of simulation of detector images from the NOvA, 

simulated GENIE and GEANT4 [16]. Each file contains varying amounts of data, but there 

are usually around 7000 x 2 images, plus 16 pieces of metadata corresponding to each image, 

such as interaction type, final state, lepton energy, neutrino energy, and more. Not all of the 

metadata will be utilized. 

For each machine learning task, it will not appropriate to use every single piece of data and 

Figure 2: GoogLeNet inspired network 

architecture [13] 
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image in the dataset, due to data balancing, but also the diminishing returns in model accuracy 

for the increase in needed computational resources. For the first task, classifying CC neutrino 

events, a total of 30 files were used. 

 

The files are initially composed of roughly 88% CC muon neutrino events, with only 12% 

background events. This data imbalance is a common problem in machine learning. Training 

a ML model on such biased data often results in disastrous results. The ML model usually 

ends up learning the majority about the dominant class, and struggles to classify the minority 

class. 

 

A model can achieve up to 89% accuracy on a test set, which is a deceptively good result. 

However, after reviewing the model’s prediction, it was found that the model was predicting 

one class only, i.e., predicting only CC events. Due to the data imbalance, the model achieved 

high accuracy, as the test set happened to 

contain around 88 – 89% CC events. In other 

words, the model coincidentally achieved a 

very good result. This result becomes trivial, 

however, when you consider the fact that the 

model is just baseline; predicting the same 

result no matter the input. This same model 

would theoretically get around 0% accuracy 

for a test set consisting of only NC events. 

 

So, it was incredibly important to preprocess 

the training data to make it suitable to be passed to the model. This process involved 

implementing a function that only extracted the same amount of each unique class from each 

data set. Although a lot of background events were filtered out, the final dataset used for 

training was now a 50/50 split between CC/background events. This resulted in around 48 

thousand images, so around 24 thousand per class. A new labelling system was implemented, 

by changing the ‘interaction’ number of each image/event into a new, Boolean variable, which 

represented a CC event with 1, and a background event as 0. In this case, all interaction types 

from 0 to 3 inclusive were classed as CC events, and the remaining – 4 – 15 were 

background. 

 

Image data was reshaped into a format suitable for CNNs (None, 100, 80, 1). Following this, 

around 1% uniform noise was added to the training data, to promote model generalization. 

After, the image data was shuffled to prevent the test, training and validation sets from 

containing data that was not representative of all of the data set. Then, the image pixels were 

normalized. 

 

The data set was split 85% 5% and 10% for the training, validation and test sets respectively. 

The validation set was kept as small as possible, as it doesn’t have a large role to play except 

to indicate the performance of the model on the test set during training, so we can save the 

best weights. It is always optimal to have as large a training set as possible to prevent 

Figure 3: A pair of detector images 
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overfitting. It can be noted that a validation set was not even used in other similar experiments 

[13 -14]. 

 

Regularization techniques were employed, such as dropout, 40% just before the dense layer at 

the end of the model. Dropout prevents overfitting by removing particular features learnt by 

the model randomly, to reduce the number of useless features/features specific to training 

data. The LRN layers deal with a concept called “lateral inhibition”, which comes from 

neurobiology. It involved normalization the output of the previous layer, especially effective 

when used in tandem with RELU activations, as they are “unbounded”. This has the effect of 

boosting the sensitivity of already excited neighbors, and dampens the neighboring neurons, 

which effectively aims to increase sensory perception [15]. 

 

There was a total of 4 network architectures tested, to compare and contrast results. All 

models were created using Keras Functional API, which is used to create more complex 

models with multi-input/multi output models. A basic densely connected network was trialed, 

as well a standard CNN model architecture. The similarity between these simpler models is 

the fact that they process both images as a concatenated input. The last two models trialed 

were the more complex mixture of experts’ models, one a simplified version of figure 1, and 

the last one is the most complex version, with three experts, taking three separate inputs, the x 

view, y view and the concatenated input. 

 

III. Data analysis 

 

After the data sets were prepared, the models were trained and then tested. The performance 

of the four networks is shown in table 1.  

 

Network Best accuracy observed 

Dense 79% 

Standard CNN 83.3% 

GoogLeNet 84.5% 

Adapted GoogLeNet 85.4% 

 

 

As expected, the performance of the GoogLeNet inspired networks performed much better on 

this classification task. 

 

There is, of course, a difference in computational resources and time required for each model, 

which increases down table 1. The few percentage points increase from the standard CNN to 

the GooGLeNet inspired architectures may not be a huge improvement on this scale, but for 

the NOvA experiment, which has access to more computational resources, the improvement 

could be beneficial. Also, as the detector will process millions of images over time, the few 

percentage points could be a difference of a few thousand images. 

 

 

Table 1: 4 different network performances on the classification task 
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Neutrino energy 

 

 

 

From the confusion matrix, a useful and popular way to display the performance of a network, 

shown in figure 4 bottom right, it can be seen that around 82% of all images were identified 

correctly. The other quadrants show the percentage of images that were classified wrongly; 

separated into false positives – 2.9% - and false negatives – 15%. Overall, it should be 

remarked that in the context of this experiment, false negatives are more problematic than 

false positives. This is due to the aims of this study – to explore the capabilities of 

contemporary machine learning methods on the task of classifying NOvA neutrino event. If 

an algorithm such as the ones created in experiment were to completely automate the process 

of sorting and finding certain event data, then it is preferrable to have false positives. To 

illustrate this concept, imagine a situation where many of these images were being analyzed – 

if false negatives are reported, it would require scientists to look through the images that were 

dismissed by the model anyway, due to the possibility that a particular event was missed by 

the algorithm, making the model almost redundant. However, in the other case, if the model 

never reported false negatives, but some false positives, then at least the model has reduced 

the data set that needs to be sorted through. 

 

Figure 4: Analysis graphs on neutrino energy metadata and how neutrino energy affects network performance 

performance 
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Observing figure 4 bottom left, which portrays the relationship between neutrino energy and 

model prediction deviation, a few interesting features can be seen. Firstly, there is a clumping 

of lower energy neutrinos, which is the dense region near x = 0, which is a trend also 

confirmed in figure 4 top left. After analyzing the energy values, there are a few zero energy 

neutrinos. This is impossible, of course, but these represent more “subtle” neutrino 

interactions where the detector equipment was not sensitive enough to measure the energy of 

the neutrino. 

 

There is also a clear clumping of deviations about 0, 0.3 and 0.7. It is uncertain why these 

deviation values are so popular with the model, but it could be due to a lot of images being 

quite similar in terms of features. The clumps also illustrate one other interesting point – there 

is a group of images, probably with similar features or similar underlying metadata that cause 

the model to consistently perform badly. Viewing figure 5, bottom right, there is a 

representation of the predictions of the network. There are clearly two main clump regions, 

where the model “prefers” to predict. This is partly due to the activation function on the final 

dense/output layer, which uses sigmoid. Sigmoid is a curve function that takes max and min 

values at zero and one. This particular function “prefers” to predict close to one and zero 

limits, due to the nature of its shape. Only a small range of values near zero make the network 

predict “middle” values between zero and one. 

 

There is also a subtle pattern – the clumping of data points at the higher deviations is slightly 

reduced as the energy of the neutrino increases. This feature is emphasized more in the graph 

in the top right of figure 4. This graph depicts the relationship between neutrino energy and 

average model deviation. The averages were calculated based on even splits in the data – for 

example, the first average is calculated over the model deviation of the lowest 10% of 

neutrino energies, the second 10 – 20%, etc. There is a clear negative trend, which implies 

that the model performs better on neutrinos with higher energy, compared to lower energy 

neutrinos. Overall, between the group of lowest energy neutrinos and highest group, there is a 

10% difference in model deviation. 

 

This result is expected. Neutrinos are generally very hard to detect due to having no charge. 

Neutrinos have a variety of different energies, depending on the process that formed it – high 

energy reactions create high energy neutrinos. The higher the energy of a neutrino, the more 

interacting they are, as opposed to low-energy neutrinos, such as the neutrinos originating 

from the big bang, which are only weakly interacting. From examining the detector images by 

eye, there is a clear trend for high energy neutrinos as opposed to low energy ones. High 

energy neutrinos tend to “penetrate” further into the detector, leaving longer, straighter tracks. 

Presumably, this is easier for the model to identify, resulting in higher accuracies on high 

energy neutrino images. For lower energy neutrinos, the detector images are less distinctive; 

often the detector images for this group tend to have less activity, containing shorter, more 

curved tracks that do not travel far into the detector. This trend is not consistent of course, and 

occasionally, there are high energy neutrinos that also leave shorter tracks characteristic of the 

low energy neutrinos, which is likely where the model loses accuracy. 
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Lepton energy 

 

 

 

Figure 5 shows the results to completing similar analysis on the lepton energy. The graphs 

show quite intuitive results. Leptons are created by neutrino charged current interactions. 

Therefore, by conservation of energy, higher energy neutrinos that undergo interaction is 

more likely to produce higher energy leptons. However, the conservation energy also means 

that the lepton energy cannot exceed the neutrino energy. In fact, if additional 

particles/photons are created, the lepton energy should be less than the neutrino. This is all in 

agreement with the graphs; looking at the top left, a similar patten is seen here as with the 

neutrino energies. The graph in the bottom left shows that the distribution of lepton energies 

is skewed even further towards zero – indicating overall less energy. The maximum energy is 

also around 50 GeV, whereas the highest energy neutrino was between 70 and 80 GeV. Lastly, 

looking at the graph in the top right, the same trend is followed by leptons; higher energy 

generally results in better model performance. As it has been concluded that higher lepton 

energies correspond to the higher energy neutrino events, this conclusion is not surprising. 

 

 

 

 

 

Figure 5: Analysis graphs on lepton energy metadata and how lepton energy affects network performance 

performance 
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Interaction modes 

 

 

 

 

Interaction modes Average model deviation 

QE 0.1761 

RES 0.22447 

DIS 0.2819 

other 0.2899 

 

In this section I will analyze the model performance based on QE, RES, DIS and background 

category “other” which refers to CC interactions that cannot be classed as the three above, 

neutral current interaction, or cosmic background.  

 

𝑣𝜇 + n =  𝜇− + 𝑝        (3) 

𝑣𝜇̅̅ ̅ + p =  𝜇+ + 𝑛        (4) 

 

𝑣𝜇 + n =  𝜇− + 𝑝 +  𝜋0        (5) 

𝑣𝜇 + n =  𝜇− + 𝑛 +  𝜋+        (6) 

 

 

𝑣𝜇 + N =  𝜇− + 𝑋        (7) 

𝑣ⅇ + e =  e + 𝑣ⅇ         (8) 

 

Equations describing QE interactions are shown in equation 3 & 4, RES shown in equations 5 

& 6, and finally DIS interaction in equation 7. Equation 8 indicates the interaction of an 

electron neutrino. Tau neutrinos are not present in our entire data set. Observing figure 6, the 

left graph shows the composition of the images used in the test set. As can be seen, the data 

set is dominated by events in the “other” category, followed by DIS events. The minority 

classes in the data would be the QE and RES events. 

 

Figure 6: Analysis graphs on interaction modes and how interaction modes affects network performance 

performance 

Table 2:  Average model performance (defined by deviation of pred. to label) of each interaction mode 
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Table 2 shows the average deviation for each interaction mode. It is very clear that there is a 

pattern in model deviation, when compared to the interaction mode. The model performs 

better on QE events on average, which are generally considered to be “cleaner” events, 

leaving two tracks in the detector image usually. The performance of the model is second best 

for RES events, then DIS and finally the “other” category. This is a reasonable result, as it 

would be assumed that “messier” events such as DIS would be more difficult for the model to 

understand and interpret. It could also be assumed that messier events have less order and 

regularity compared to QE events, which would also affect the performance of the model. 

This is also shown in the histogram, where the distribution of model deviations for each 

interaction mode is shown. This is interesting, because part of the DIS set is well classified 

(the blue distribution peaks around zero deviation), similar to the performance of QE 

interactions, but seemingly the DIS deviation is much higher due to a smaller group of images 

that produce model deviations in the range 0.6 – 0.8. It is uncertain why this is the case, but it 

can be speculated that it is due to DIS events being dominant at higher energy, where the 

model performs better. However, DIS events which happen at lower energies could account 

for the DIS clump of higher deviations. 

 

Energy reconstruction tasks 

 

Energy reconstruction is crucial for the NOvA experiment, as neutrino oscillations and 

differential cross-sections are functions of neutrino energy [17]. More specifically, the energy 

of incoming neutrino particles is a parameter of oscillation probability, as shown in equation 

2. Therefore, the accuracy of neutrino energy construction constrains the precision to which 

physicists can estimate the neutrino oscillation parameters. Traditionally, particle energies are 

reconstructed by adding up or fitting to the hits on detector readout units, and event energy is 

reconstructed as a function of particle energies in the event [17]. 

 

In this additional experiment, the aim is to “reconstruct” the energy of the neutrino that 

produced a certain interaction by feeding a neural network two images of the detector as 

before, but instead of binary classification, the network will estimate the initial energy of 

neutrino in units of GeV. 

 

For this task, there are two architectures that could be trialed – the same architecture as before 

(GoogLeNet), or an LSTM network inspired by figure 7. The LSTM belongs to the larger 

umbrella of RNNs, which stands for recurrent neural network. The LSTM, and the family of 

RNNs are networks that specializes on time series/sequential data, and has achieved 

impressive results in a selection of tasks, such as language modelling, speech-to-text 

transcription, machine translation and much more.  

 

The basic idea of RNNs is to achieve some preservation of previous data in earlier neurons. 

Whilst in other neural networks, the output of previous layers is no longer used later in the 

network, the RNN preserves past data, by having a mechanism which “reinjects” old data into  

every following cell. 
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The theory behind using LSTMs for 

this particular task is that the detector 

images can be viewed chronologically 

– the image itself describes the 

path/motion of particular particles 

within the detector. Therefore, knowing 

that the particles “enter” from the top 

edge of the image, it is feasible to feed 

the network an image row by row 

starting at the top edge of the image, 

and to process the rows of pixels as a 

video of sorts, that describe the movement of the particles. 

 

For this task, we will not normalize the label data, as there is no suitable “maximum” value to 

divide the data by. Instead, the metric used by network to judge performance will be mean 

absolute error (MAE). Another suitable metric would be mean squared error (MSE), which 

penalizes large deviations more than small ones, and can be square rooted to get an estimate 

of the absolute deviation as well. In this case, MAE was used so the final result could be 

compared directly to absolute values to gauge the performance of the network in 

understandable terms. 

 

Both the LSTM and CNN were trialed. The LSTM network trained faster, but fell short on 

MAE of 6.9, as opposed to the much slower CNN, which achieved MAE of 6.2. 

Similar models were built and trained; the results are shown in table 3. 

 

Task Final metrics 

Predicting Y  

Predicting neutrino E Mae: 6.22, 0.6 std 

Predicting lepton E Mae: 0.19, 0.72 std 

 

 

 

Predicting neutrino flavor and interaction mode 

 

Task Final metrics 

Predicting neutrino flavor 68.4% accuracy 

Predicting interaction mode 46% accuracy 

 

The final result of these tasks was less successful, shown in table 4. Due to the nature of these 

classification tasks, which are more specific, with more classes to learn and identify, naturally, 

would perform worse using similar network architectures and similar size of data sets. 

Figure 7:  Energy reconstruction model [14] 

Table 3:  Final metrics on energy recontruction models 

Table 4:  final metrics on predicting neutrino flavour and interaction mode 
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The prediction of neutrino flavor is directly comparable to the results of another CNN 

developed to combat a similar task see ref [13] achieved an accuracy just above 70%. That 

experiment had access to more resources, so comparatively speaking, the model to predict 

neutrino flavor was quite successful. 

 

The interaction mode task requires the identification of 4 different classes. The baseline 

model would achieve an average of 25% accuracy, so the model isn’t a huge improvement. 

 

Predicting the number of protons and pions 

 

One of the more challenging tasks for this experiment, this task requires a suitable dataset that 

contains the image data, as well as labelled data which corresponds to the number of protons 

and pions in the image. 

 

There are several metrics that may be interesting to look at in this case. The metrics that are 

related to this problem are: the interaction mode (QE, DIS, RES and other), the number of 

prongs present in the final state, the parent metric, the final state metric, and the particle 

metric.  

 

After conducting analysis on the metric, the parent and particle metrics were discarded, after 

it was found that the metrics were not correlating with other metrics in an understandable 

way. It is unlikely that the metrics were representing PDG particle codes, as not only were the 

number constrained to a maximum value of 391, there were an abundance of zeros, which is 

not a classified particle, and ones, which correspond to down quarks, which are not known to 

be the biproduct of QE or RES interactions. It is more likely that these metrics represented the 

number of parent and final state particles. Regardless, the metrics are still not very useful for 

this task. 

 

Nevertheless, the final state, final state prong number and interaction mode, when used in 

tandem, provided a very interesting result. Observing equations 3 and 4, which describe two 

possible Quasi-Elastic interactions, it can be seen that in one case, one charged particle is 

produced (an antimuon) and in the other case, two charged particles are produced (a proton 

and a muon). After analyzing data for QE events, a pattern in the data was found. Many of the 

interactions produced only 1 prong – or one charged particle – and a minority of events 

produced 3, 5 and in rare cases, 13. In the cases with 5 prongs occur from electron neutrino 

interactions. The cases with 13 prongs will be ignored, as it cannot be determined what 

interaction has occurred. It can be speculated that equation 3 and 4 are representing the first 

two rows of table 3. Although only two charged particles are created in equation 4, an extra 

prong/track could arise from the decay of the muon. 
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Interaction mode prongs Final state 

QE 1.0 𝑣𝜇, 1 track 

QE 3.0 𝑣𝜇, 3+ tracks 

QE 5.0 𝑣ⅇ, 2 tracks 

QE 13.0 Unknown 

 

Similar deduction techniques were used on RES interactions, where the majority of events 

contained three prong events. Both equations 5 & 6 could correspond to these events, but 

equation 5 is unique as it produces a neutral pion, which usually causes “showers” in detector 

images. So, it is likely that resonant charged current events with 3 prongs and 1+ showers are 

producing 2 protons/pions, as according equation eq. 5. Equation 6, which only produces a 

positive pion, can be approximated to RES interaction with 3 prongs, but no showers. DIS 

and “other” interaction modes should be counted as producing no protons/pions.  

 

Next, the data was balanced across 0, 1 and 2 proton/pion events. The labels were then one 

hot encoded, which is a method of converting each class into a sparse vector – all zeros, with 

only 1 one – corresponding to the correct label. This can then be passed to a network with 3 

dense output neurons, and softmax activation function. The softmax function confines the 

sum of all the outputs from the network to equal 1, in other words, it gives the probability of 

each class. 

The final accuracy for this task reached 43% accuracy. 

 

Conclusion 

 

This experiment has been insightful into the different machine learning methods available to 

complete certain tasks. There were trade-offs between networks, such as the faster but less 

precise LSTM network, and the slower but more precise GoogLeNet CNN. This realistic 

machine learning task shows the true side of machine learning; the unbalanced data sets, the 

lack of certain meta data such as tau neutrino interactions and uncleaned data. This task also 

illustrates the strengths of machine learning but also it provides insight into a future where 

machines can complete data analysis completely without human guidance. 

 

The experiment has several points of improvement. If possible, use a machine with a lot of 

RAM and a fast GPU. There are also many advantages to running models on a Linux OS 

instead of windows. If more RAM and GPU is not available, it would be wise to implement a 

pipeline that trains a model using chunks of the full dataset at a time, only loading some data 

onto the RAM at a time, instead of loading the full data set. Implementing one of the above 

improvements would allow the project to gain access to a larger dataset, which is one of the 

best ways to prevent overfitting and improve model performance. 

 

 

 

Table 5:  sample metadata from selected QE interactions 
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